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A theory is presented which describes the propagation of large amplitude 
tsunamis across a basin of variable depth in the limit when this depth is varying 
slowly on a scale deiined by the wavelength. In  part 1 only the off-shore behaviour 
is considered; in part 2 some features of the final run up are described. 

The technique used is to regard the wave as a slowly modulated simple wave 
with a slowly changing Riemann invariant. One of the most significant results is 
that over distances where the effect of depth variation modulates the amplitude 
of the wave, but does not disperse it, the variations of the amplitudes of the flow 
variables, such as maximum surface elevation, can be calculated as functions of 
the undisturbed depth without knowing how this depth varies in distance and 
without knowing the wave profile. These variations are fully calculated. 

The work continues the investigation on large amplitude acoustic pulses in 
stratified media described in an earlier paper by Varley & Cumberbatch (1970). 
It is a generalization of Whitham’s work (1953) on the sonic boom. 

1. Introduction 
This paper describes the behaviour of a class of large amplitude shallow-water 

waves as they propagate over large distances into a region where the undisturbed 
depth is slowly varying for the waves. This work continues the investigation of 
large amplitude acoustic pulses in stratified media, the first part of which was 
described in Varley & Cumberbatch (1970). The theory developed in that paper, 
to describe a large amplitude pulse whose behaviour was governed by quite 
general systems of hyperbolic equations, was based on heuristic arguments. 
Here a more mathematical justification is presented for the special case of shallow- 
water waves. The arguments presented can readily be generalized. However, 
because we are dealing with a definite set of equations which are, perhaps, the 
simplest equations that describe finite amplitude waves in an inhomogeneous 
medium realistically, a detailed account of the predictions of the theory is 
possible which clearly illustrates its usefulness. 
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The specific problem considered is that of the behaviour of a tsunami as it 
moves over a continental shelf towards a shoreline. The values of the pertinent 
physical parameters are taken from Bascom (1964), and are given in $5.2. No 
attempt is made to justify the use of shallow-water theory to describe such waves. 
(The reader is referred to Carrier 1966, where this topic is discussed.) In  part 1 of 
this paper we consider the approach of a tsunami towards a shoreline, and follow 
it far enough for the decrease in undisturbed depth to increase its effective 
amplitude to such an extent that linear theory is not applicable. In  part 2, some 
features of the final onslaught when the tsunami crosses the shoreline will be 
discussed. 

A plane, progressing shallow-water gravity wave, which does not contain a 
bore, and which is moving into an undisturbed region where the depth h* is 
constant, is necessarily a simple wave (Stoker 1957). If 7" and u denote the fluid 
elevation and velocity, then in any such wave irrespective of the wave profile, 
the Riemann variable 

S = (g(7* + h*))* - &A = (gh*)*. (1.1) 

When h* varies with the distance x in the direction of wave propagation, no 
exact integral such as (1.1) of the governing equations exists. However, as we 
show in $4, when h*(x) varies slowly on a scale defined by the wavelength, or 
equivalently, if the wave is a pulse in the sense that its duration at  any station x is 
small compared with the BrunkVaisala time 

the relation (1 .1) ,  with h* va.rying with x, still holds to a good approximation. 
Typically, a t  the edge of the continental shelf, which is about 60 miles off-shore, 
101-1 is 75 min, one half mile off-shore it is typically 7.5 min. 

The structure of a pulse becomes increasingly complex as the distance it 
travels increases. Here, in part 1, we consider some aspects of its behavour in 
three regions in all of which, to a first approximation, 7* and u are related by 
(1 .1) .  In  region I the effect of the variation in h* can be neglected and the pulse 
behaves as a simple wave. Consequently, in this region, the pulse is not attenu- 
ated or amplified and remains sharp in the sense that conditions at the passage of 
a characteristic wavelet are solely determined by the signal carried by that 
wavelet, and are independent of the signal carried by all precursor wavelets. 
However, because of amplitude dispersion, the pulse may distort and generate 
bores. In  region 11, which includes region I, the relation (1.1) still holds and the 
pulse is still sharp. However, the variation of h*(x) cannot, in general, be neg- 
lected: it modulates the amplitude of the pulse. In  region 111, which includes 
region 11, the relation (1.1) still holds, but now, in general, the signal is no longer 
sharp, and the characteristics are no longer the carriers of the disturbance. The 
three regions can be distinguished by the effect on the pulse of the variation of the 
Riemann variable S. In region I neither the variation of S moving with the pulse 
nor across it is significant. In  region I1 the variation of S moving with the pulse, 
but not its variation across it, is important. Finally, in region I11 both the 
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variation in S moving with the pulse and the cumulative effect of the small varia- 
tions in S across it are equally important. 

Motivated by the idea formulated in $1,  that the waves considered can be 
regarded as slowly modulated simple waves, in which the Riemann variable S is 
slowly varying compared with the fast Riemann variable 

p = + h*))g + &a, 

in $ 2  we re-write the equations of shallow-water theory in a form which is 
optimum for the discussion of such waves. As independent variables we use x and 
a characteristic parameter a; as dependent variables we use S(a, x), F(a ,  x) and 
t (a ,x) .  Then,in $4.1, we show that, when thevariation in S across the wave (but 
not moving with it) can be neglected, the variation of F with h" at a characteristic 
can be calculated without knowing the dependence of h* on x. In $4.1 we show 
that the variation of S across the pulse is negligible, at  least away from regions 
where the flow is critical, if the duration of the pulse r(x) is short in the sense that 

The inequality (1.4) is the basic assumption used in linear geometric acoustics. 
Once h*(x) and the variation of P with t at some reference station x = 0 are 
known, t(a, x) can readily be determined by a simple quadrature. Consequently, 
the variation of the flow variables as functions of ( t ,  x) in region I1 can rea,dily be 
found. 

In  $5.1 we use the description of the flow in region I1 to justify the conjecture 
that in some vicinity of any station x = x,,, for some limited distance, the pulse 
behaves as a simple wave, and that the global behaviour of the pulse in region I1 
is obtained simply by enveloping these local simple waves in an appropriate way. 
The various scales over which the local simple wave approximation is valid 
together with the signal carried by these waves, is given in terms of the signal at  
x = 0 and the variation in h* between x = 0 and x = xo. In  $5.2 the values of 
these scales are given for a continental shelf with constant slope. 

One of the most significant predictions of the pulse theory is that, in region 11, 
the variations of the maximum amplitudes of the flow variables with h* can be 
calculated without knowing the dependence of h* on x, or the detailed variation 
of F with t at x = 0. These functions are only necessary when a knowledge of the 
distortion of the pulse profile as it propagates is of interest. In  $5.3 (one of the 
most important sections of the paper: it can be read independently of the re- 
mainder), it is shown that the variations of these maxima, such as maximum fluid 
elevation and fluid speed, can be calculated from non-linear implicit algebraic 
relations. The results are depicted in figures 1-4. As an example, we predict that 
in region 11, if no bores form, the maximum elevation induced at  any station x by 
the passage of the pulse can never grow to be greater than 3 of the value of the 
undisturbed depth at  which it occurs. (The ratio of maximum elevation to 
undisturbed depth in a solitary wave is 0.78.) 

In  $6.1 the cumulative effect of the small change in AS across the pulse is calcu- 
lated in the small amplitude limit. It is shown how the usual expansion tech- 
niques of classical geometric acoustics, which are valid only for small amplitude 
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pulses in region 11, must be modified to describe conditions in region 111. This is 
accomplished by using expansions in the characteristic parameter a and two time 
scales. The general terms in the expansions are found for arbitrary forms of h*(x). 
Since the wave amplitude and slope of the free surface remain small, the analysis 
of $6.1 should be applicable to a tsunami as it crosses an ocean and begins its 
climb over a continental shelf. 

In  § 6, we consider the special case when 

as the pulse approaches the shoreline at x = L. When n > $, we show that bores 
must always form before the shoreline is reached although when n > 2 ,  so that w 
is bounded at  the shoreline, the effect of dispersion need not be significant. Since 
the effect of bores is to dissipate a wave, the question arises as to whether a small 
amplitude pulse which contains a weak bore can be dissipated rapidly enough for 
it to remain of small amplitude up to the shoreline. It is shown in 9 6.2 that this is 
not possible. Even with bores the effective amplitude of a pulse is large as it 
approaches a shoreline. However, it is possible for a pulse to become completely 
amplitude-dispersed while it remains of small amplitude. The final climb to the 
shore of such fully amplitude-dispersed pulses will be discussed in part 2 .  

2. Shallow-water waves 
The aim of this paper is to describe conditions in a class of shallow-water 

gravity waves as they propagate over large distances into regions where the 
undisturbed depth is slowly varying for the waves. If x and t denote a horizontal 
distance and time measure, and if g-lh(z) denotes the undisturbed depth, the 
equations governing the disturbed depth g-la2(t, x) and the fluid velocity u(t, x) 
in these waves can be written (Stoker 1957) 

and 

U,t + (a2 + S U ~ ) , ~  = h'(x), 
upt + = 0. 

In (2.1) and (2.2), u,a and h4 have the dimensions of velocity. 

uniform region where the Riemann function, 
When h'(z) = 0 any boreless wave moving in a direction of increasing x into a 

S = a - $u = constant = so say, (2.3) 

is a simple wave (Stoker 1957). In  such a wave S = so, and the Riemann function, 

F = u++u, (2.4) 

c = a+u. (2-5)  

is invariant at  any one characteristic wavelet which propagates with invariant 
speed 

This implies that F(t ,  x) can be related to its time variation, Fo(t), at any reference 
station x = xo by the condition that 

W , x )  = &(P), (2.6) 
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where the characteristic variable P(t, x) is determined from the implicit relation, 

We consider waves which are progressing into a region where h(x) and X are 
both varying so slowly that conditions may be approximated over some limited 
distance and for some limited time by conditions in some simple wave. That is, 
waves for which the local effect of the small ambient stratification is simply to 
perturb the relations (2 .6 )  and (2 .7) .  However, the effect of the locally small 
ambient stratification does, in general, accumulate in both distance and time to 
produce a significant influence on the behaviour of the waves. For sufficiently 
large variations in the distance /x-xo:o) and the characteristic variable p, the 
relations (2 .6)  and (2 .7 )  are not even approximately valid. Globally the waves 
behave as slowly modulated simple waves. Here, we restrict attention to the global 
behaviours of pulses. These waves travel far enough for the effects of locally 
small stratification to accumulate in distance, but at  any station x do not last 
long enough for any significant accumulation in time. 

3. Modulated simple waves 
Motivated by the form of the simple wave relations, which are expected to be 

locally valid, x is taken as one independent variable and a characteristic para- 
meter a, rather than t ,  as the other. As dependent variables we choose the fast 
Riemannvariable F(a,  x) and the slow Riemannvariable S(a, x) in terms of which 

a = * ( F + X )  and u =  F - S .  (3.1) 

A new dependent variable Q(@, X ) ,  the incremental arrival time, is also intro- 
duced. This is defined as 

at constant x. (3 .2 )  
at Q = -  
da 

In  terms of these variables conditions (2 .1)  and (2 .2)  can be expressed by the 
equations, 

( 3 F - S ) I 5  = h'(z), (3 .3 )  

(3 .4 )  

(3 .5 )  

u = 0  and F = S = a = h * .  (3 .6 )  

= - 2( 327 - S)-'[3B', - S, ,I, 
and S,a = iM(3F - 8)  (F + S)-'[(3X - F )  &,z - h'(z)]. 

In  this paper we consider boreless pulses propagating into an undisturbed 
region where 

Conditions in any such pulse are described in terms of the variation in P at some 
reference station x = 0 where h = h, and where the pulse lasts for time T ~ .  It is 
convenient to tag the characteristic wavelets so that a t  x = 0 the characteristic 
parameter 

In  (3 .7 )  t is measured from the arrival of the pulse at x = 0. 

a = t / ~ ~ ,  and hence M = T ~ .  (3 .7 )  
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4. Non-dispersed amplitude modulated pulses 
There are many equivalent ways of motivating the approximation scheme used 

in this paper. Some of these, and their relation to the schemes used in classical 
geometric acoustics and those used by Whitham (1953) in his theory of the sonic 
boom, were described in Varley & Cumberbatch (1970). Here a more mathe- 
matical approach is adopted. We consider pulses which at any station x are so short 
that the change AS in the slow variable S i s  small compared with the local sound speed 

c = a + u  = i ( 3 F - S ) .  (4.1) 

Although the physical interpretation of this statement is not immediately 
obvious, we show below that, for a pulse moving into an undisturbed region 
(which does not produce a critical flow), it is equivalent to the more familiar 
condition that the time duration of the pulse 7(x )  at any station x is short in the 
sense that 

174 < 1 ,  (4.2) 

where W ( X )  = dhh/dx. (4.3) 

is the Brunt-Vaisala frequency of the medium. This  is  the basic approximation 
used in the classical linear theory of geometric acoustics. Therefore, the schemes 
described in this paper can be regarded as a modification of those used in linear 
geometric acoustics, so that they are applicable to pulses of any amplitude. 

The reason that (3.3)-(3.5) are mathematically tractable when the change of S 
at any station x is small in the sense stated is immediately apparent when ( 3 . 3 )  is 
re-written as 

[1-&] (3F-h4)FZ = h’(x), 

where A S  = S - h t ,  

When 
A S  

1, 

(4.4) 

(4.5) 

over distances where the cumulative effect of the change in S at fixed x, but not 
its change moving with the wave, can be neglected, (4.4) can be approximated by 

(3F-h*)l7,  = h’(x). (4.6) 

This is a non-linear transport equation governing the variation of the fast 
variable P with x at each wavelet of the pulse. For any h(z),  (4.6) integrates to give 

(4.7) ( F -  1 )  ( F +  +)% = $(a)H-%, 

where H = h/h,, P = Ph-4, (4.8) 

and where $(t/7,) = ( B -  1) ( P + + ) t  at x = 0. (4.9) 

Equation (4.7) is an implicit equation for P as a function of (a, 2). To determine 
F as a function of ( t ,  x) it is necessary to calculate t(a, x) from the conditions that 

_ -  at - c-1 = 2(3F - h&)-l [ 1 - 3i!h4]-1, ~ 

ax 
and t = T,E at x = 0. (4.10) 
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In  the limit ( 4 4 ,  over limited distances, the solution to (4.10) is approximated by 

(4.11) 

where the integration is a t  constant a, and where 

A, = 7,ht (4.12) 

can be approximated by (4.6) and (4.11), and S can be approximated 
is the wavelength, according to linear theory, of a wave with period 7,,. 

by h4, (3.4) integrates, subject to the initial condition (3.7), to give 
When 

(4.13) 

To this approximation, 
- 

(4.14) 

and the elevation 7 = a2-h  = k h ( P + 3 ) ( P - l ) .  (4.15) 

The results (4.7)-(4.15), which describe conditions in a short duration boreless 
pulse propagating into an undisturbed region, are new. No assumption has been 
made about the amplitude of the disturbance. The only restriction is condition 
( 4 4 ,  which, according to (4.14), is equivalent to the condition that 

IAS/cI < 1. (4.16) 

To see that for subcritical flows it is also consistent with the more familiar con- 
dition (4.2) of geometric acoustics, note that according to (3.5) these results 
predict that, to a first approximation, a t  constant x 

1 -  a =:+hz(P+l),  u = h&(P-l) ,  c = $hB(F-i), 

(4.17) 

(4.18) 

In (4.18) the integration is at  constant x ;  

to(x) = joZh-:(8)as (4.19) 

is the arrival time of the pulse at  x ,  and w(x) is the Brunt-Vaisala frequency. 
According to  (4.14), for subcritical flows, when 

c > o ,  P > + .  (4.20) 

Then, according to (4.18) and the mean value theorem, 

(4.21) 

(4.22) 

(4.23) 
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where PM(x) = maximum value of P at x. (4.24) 

The required result now follows directly from the inequality (4.23). This implies 
that in regions where (FM- + ) / ( F - -  $) is bounded 

(4.25) 

5. Predictions of the theory 
Over distances where the cumulative effect of the change in S at fixed x can be 

neglected, the signal carried by the pulse is sharp. For, according to (4.7), (4.11), 
(4.14) and (4.15), just asinasimplewaveconditionsat anystationxat thepassage 
of the wavelet a. are uniquely determined by h(x) and what was happening at the 
passage of the wavelet a. at some previous reference station x = 0. To a first 
approximation conditions are independent of the information carried by all the 
previous wavelets 0 6 a < a0. In  this sense, the characteristics are the carriers of 
the disturbance. The effect of the variation of h(x) is to attenuate or amplify the 
amplitude of the pulse without dispersing it. In  $6  it is shown that in the 'far 
field' the cumulative effect of the change in S at any x, as well as its change 
moving with the wave, must also be taken into account: it disperses the pulse. 

5.1. The local simple wave approximation 

The approximation scheme used to obtain the results described by (4.7)-(4.15) 
was motivated by the hypothesis that, over some limited distance from any 
station x = xo, the pulse could be approximated by some simple wave. In  any 
such wave F ,  u and a are invariant at  any characteristic wavelet which propagates 
with invariant speed c = a + u. A bound on the distance over which this approxi- 
mation is valid can readily be derived from the speed of the front, which is 
K hd(x). For, according to the mean value theorem, the change in the speed of the 
front at  any two stations x and xo compared with its speed a t  some intermediate 
point z (which depends on x and xo) can be written 

where 

is the local Brunt-Vaisda length of the medium. According to (5.11, the variation 
in the speed of the front can only be safely neglected at all x in the range 

5 0  < x < x,+D 

if D < minZo(x) for zo < x < xo+D. (5.3) 
To obtain a bound on the distance over which the variation in F at a wavelet 

may also be neglected, note that, by the mean value theorem and (4.6), 

(5.4) 
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where 1 = #F(F-  &)lo (5.5) 

and z is some station between x and xo. Linear theory would take F = 1 in (5 .5 ) ,  
and hence 1 = Zo(z). Then, according to (5.4) and (5.2), the variation in F can also 
be neglected when (5.3) holds. Moreover, in that part of the pulse where the 
disturbed depth is greater than the undisturbed depth, the neglect of the varia- 
tion of P over a distance D that satisfies (5.3) is also valid. This follows directly 
from the formula (4.15) for the elevation, which implies that, when 7 > 0, 
P > 1, and hence, by (5.5), I > Eo(x). Only in that part of the pulse where 7 < 0 
and Q < F < 1 does the distance over which the variation in P at a wavelet can be 
neglected differ from the distance over which the variation in ht(x) can also be 
neglected. Consequently, when the pulse is not just a wave of elevation, condition 
(5.3) must be replaced by the more restrictive condition that the variations in 
both F and h8 at any wavelet a may only be safely neglected at  all x in the range 
x, < x 6 xo + D(a) if 

D(a) < minZ(a, x) for xo < x < xo +D. (5.6) 

Since (4.14) and (4.15) express the flow variables a, u, c and 7 in terms of ht and 
P = Ph-8, their variations may also be neglected over the range (5.6). 

Now that a bound has been found on the distance from x = xo over which the 
pulse can be approximated by a simple wave it only remains to determine the 
signal carried by this wave in terms of the variation in F at x = 0. This is easily 
done. For, in the approximating wave, P(a, x) is replaced by 

whereP(a, xo) is given in terms of #(a) ,  and hence in terms of F(a, 0) ,  by (4.7) with 
H evaluated at  x = x,,. 

To represent the approximating simple wave in the more familiar form (2.6) 
and (2.7), we introduce a new local characteristic parameter 

which, according to (4.11), is the arrival time at x = xo of the wavelet a. Then, by 
(4.11), the arrival time of the characteristic wavelet /3 at x( > xo) can be written 

def 
I f  Fo(P) = E'(a, xo), (5.10) 

where a(P, xo) is given implicitly by (5.8), then, for all x in the region (5.6), to a 
first approximation, 

(5.11) 

which are identical with (2.6) and (2.7) with so = ht(xo). 
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5.2. w ( x )  and E(x) for a continental shelf with constant slope 

To obtain an idea of how long a pulse may actually last for it to be short enough 
for our theory to apply, consider a tsunami of elevation moving towards a shore- 
line over a continental shelf whose slope is constant. Then, if x = 0 is the edge of 
the continental shelf, and if x = L is the shoreline, 

(5.12) 

where g-lh,, = h$ say, is the undisturbed depth at  x = 0. Typical values of h$ 
and L, as given by Bascom (1964), are 

h$ = 600ft and L = 60miles (5.13) 

With h(x)  given by (5.12), and the Brunt-Vaisala frequency by (4.3), the con- 
dition (4.2) on the duration of the pulse reads 

where T(x )  = 2L(gh:)-i 1 -- = [ w ( x ) ] - ~  ( e)& 
(5.14) 

(5.15) 

is identical with the time it takes a boreless front to travel from the station x to the 
shoreline x = L. With h$ and L given by (5.13), 

T(0)  = 75min, (5.16) 

so that, according to (5.14), a pulse is short as it passes the rim of the continental 
shelf if its duration is negligibly small compared with 75 min ! When the pulse has 
reached the station x = 0.99L where h = O.Olh,, the pulse is short if r < 0.1T(O). 
This implies that, when h: and L are given by (5.13) the pulse is still short when it 
is 0.6 m from the shoreline where the depth is 6 f t t  if its duration is negligibly 
small compared with 7*5min! Note that, according to condition (5.14), the pulse 
approximation is only valid at  any x over a time interval which is less than the 
time it takes for a bore-less front to return to x after reflection from the shoreline. 

WithHgiven by (5.12),  thelocal Brunt-VaisSilalength at  x (defined by ( 5 . 2 ) )  is 

I&) = 2 ( L - x ) ,  (5.17) 

which is twice the distance of x from the shoreline. Since Z,(x) is a decreasing 
function of x its minimum value in the range x,, d x 6 x,, + D is 2 ( L  - x, - D). 
Consequently, in this range, a wave of elevation may only be approximated by a 

D < 3(L-X,,), (5.18) simple wave if 

which is 3 the distance from x,, to the shoreline. This implies that, when (5.13) hold, 
a wave of elevation is not appreciably affected by the slope of the continental 
shelf (+  &) as it travels shoreward over the rim for distances which are small 
compared with 40 miles. 

This small value for the depth follows from the assumption that the continental shelf 
is of constant slope. The error in this assumption is most significant a t  the shoreline. 
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Of course, as the pulse moves towards the shoreline T(s),  and consequently 
~ ( x ) ,  approach zero. In  fact, not only does the time interval over which the pulse 
approximation is valid approach zero, but the assumption that the front travels 
with acoustic speed is also invalidated, For a theory which neglects the cumulative 
effect of locally small A# and also the cumulative effect of locally small vertical 
accelerations (both of which disperse the wave) predicts that a bore will always 
form a t  or near the front of a tidal wave of elevation as it moves up a beach of 
constant slope. The effect of a small amplitude bore and the effect of non-zero Ah' 
on a small amplitude pulse is discussed in 9 6. 

5.3. Variation of wave amplitude with h 
One of the most significant predictions of the pulse theory is that, over distances 
where the signal carried by the wave remains sharp, the variations in the ampli- 
tudes of the state variables with h can be calculated without knowing the forms 
of h(x) and the signal function $(a). A knowledge of these functions is necessary 
only when the variations of the state variables with x at fixed t ,  or with t at fixed 
x, are of interest. 

Consider, for example, the variation with h of the maximum elevation 7 which 
occurs at any station x during the passage of a wave. This maximum elevation 
occurs at the passage of a characteristic wavelet 

a(t ,x) = const. = aM say, a t  which $'(aM) = 0. (5.19) 

This is easily seen by noting that when the maximum elevation occurs 

q,t(t,x) = 0, (5.20) 

which, by (4.15), implies that P,a(a,x) = 0: this, together with the statement 
(4.7) for F(a,z) ,  implies (5.19). The variation of maximum elevation? 7, with 
h thus reduces to determining the variation of 7 with h at a characteristic. This is 
easily done. For (4.16) states that 

(5.21) 

where, according to (4.7) and (4.9), the variation in F with H = h/ho is given by 

( F -  1) (F+  3)g = (Fo- 1) (&+ $)*H+. (5.22) 

In  (5.22) the constant parameter Po is given in terms of the ratio yMo/h0 of maxi- 
mum elevation to undisturbed depth as the pulse passes x = 0, where H = 1, by 

(5.23) 

Once qMo/Ao is specified, (5.21) and (5.22), with Po determined from (5.23), deter- 
mine qH/ho as a function of H .  The variation with H of the speed c, of the wavelet 
aM can also be determined. It is given by (4.14) as 

C M / h i  = $(P- + ) H i .  (5.24) 

t The trajectory of the wavelet aM at which a(v(t, z))/at = 0 is not, in general, identical 
with that of a crest at which a(v(t, z))/az = 0. 

50 F L M  49 
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The description furnished by (5.21), (5.22) and (5.24), implies that, at  the 
wavelet aM, 

and 

(5.25) 

(5.26) 

According to (5.25), as a wave of elevation in which 

q 2 0 and consequently F 2 1 (5.27) 

moves into a region where the undisturbed depth is decreasing, qar increases as it 
passes x, if at  x 

1 < F c 2, which corresponds to 0 < q/h < g. (5.28) 

I f  at x = 0 the maximum elevation lies in the range 0 < q M o / h O  < g, and if the 
pulse moves shoreward over a bottom where H is monotonically decreasing, then, 
according to (5.22) and (5.23), P increases monotonically and becomes unbounded 
as H+O. However, according to (5.21) and (5.25), even though qM a t  first 
increases it reaches a maximum when F = 5, and then decreases to a finite value 
a t  the shoreline. The maximum value of qM, qM,, is related to h,, the value of h a t  
which it occurs, by the simple relation 

VMni = Phmt, (5.29) 

= 5. h, is determined by con- 

hm/ho = 0*50(& - l)t(Fo + 3);, (5.30) 

where Fo is given in terms of qni,/ho by (5.23). Equation (5.30) is a special case of 
(5.22) with F = 4. The point at  which qM attains its maximum value only lies 
between z = 0 and the shoreline if, as the pulse passes x = 0 , q  = vJTu lies in the 
range (5.28). If qMo/h, > p, q3{ decreases monotonically as H decreases, and 
reaches a limiting value at the shoreline. To calculate qdIIs note that, as H-+ 0, 
(5.22) predicts that 

(5.31) 

€or all Po > 1.  This, together with (5.21), gives 

which is a special case of condition (5.21) with 
ditions at  x = 0: it is given by 

F = (F,- l)f(F0+ $)%H-3[1+ O(P-2)], 

qJfs/hn = $(F, - l)+(F,+ ?g)g = 0-50hm/h0. (5.32 a) 

Figure 1 depicts typical variations in qM/qlMo with H for qMo/ho = 0.01,0.05 and 
0.10. For comparison, the broken curve depicts the variation in qM/qMo that is 
predicted by linear theory. This is obtained by formally linearizing (5.21) and 
(5.22) about F = 1 to given 

rlM = T M , H +  (5.32 b) 
t This ratio, 0.78, of elevation to undisturbed depth also occms in other contexts in the 

study of water waves. It is the ratio of maximum elevation to undisturbed depth of a 
solitary wave (Lamb 1945); it is also the ratio of elevation to undisturbed depth a t  which 
the wave crests of swell become unstable (Bascom 1964) and break. 
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The linear theory is, of course, completely erroneous at  the shoreline where it 
predicts infinite heights. In  figure 2 the variations of qJf in pulses which as they 
pass x = 0 have qMo/hO > f are also illustrated. These correspond to pulses which 
have peaked before reaching x = 0. 

The occurrence of a negative minimum value of q during the passage of a wave 
also coincides with the passage of a wavelet at  which #(a)  has a stationary value. 
Consequently, the variation of this minimum value, which we also denote by qM,  
and the speed cM of the wavelet aM are also described by (5.21)-(5.26). NOW, 
however, since qM < 0, in regions where the flow remains subcritical with c > 0, 
at aM 

For p in this range, according to (4.14), the fluid velocity at  the passage ofa,  

+ < P < l .  (5.33) 

u,, < 0, and hence cM < aJ1. (5.34) 

Figure 3 depicts the variations in qM/qMo when qMo/ho = - 0.01, - 0.05 and - 0.1. 
Since all these values lie in the range 

(5.35) -$ < rMo/ho < 0 

(and so, by (5.23)) correspond to Fo in the range + < Po < 1) the flow induced at 
x = 0 by the passage of these waves remains subcritical with c ,  > 0. However, as 
H decreases, cM also decreases, and the flow becomes critical when cM = 0 and 
F = + a t  

H = HC = h,/ho = 1*38(1 -Fo)f(Fo+ 3);. (5.36) 

At this point, according to (5.21), the maximum depression 

- 

qMc = -Ah 0 C’ (5.37) 

Since our theory is only valid when c > 0, the simple relation (5.37) implies that 
it can only be used at  any x, where the undisturbed depth is h(x), for times when 
7 > - ih .  The broken curve in figure 3 gives the value of qM/qnf0 at any H in the 
range 0 < H < 1 at which, according to our theory, the flow becomes critical. 
This curve is drawn from the information provided by (5.36), (5.37) and (5.23). 

To obtain the variations of qn, with H which are depicted in figures 1-3, it was 
implicitly assumed that the wavelet aJf, whose passage marks the occurrence of 
the elevation ~ ~ ( x ) ,  reaches all x in the region of interest. Actually, any station, 
x = xC say, at  which according to figure 3 the flow becomes critical, is not reached 
by the wavelet aM whose speed cA1 -+ 0 as x -+ xc. What happens is that the pulse 
always develops a bore at some x < x,. Once formed, this bore moves faster than 
the wavelet aM, which it catches and overtakes. At the passage of the bore, the 
level of the free surface increases. 

That a bore must form at some x < x, is easily seen from the expression (4.13) 
for the incremental arrival time Q, which is zero at  bore formation. At any time 
before a bore forms, there are two distinct flow regions, which are separated by the 
wavelet aM at which $‘(aM) = 0. In  some region ahead of and bounded by cc, 
where a < aM, the level of the free surface at  any x is still decreasing. Since 
$’(a) c 0, in this region 0 is strictly positive and no bores form. However, in some 

50-2 
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region behind and bounded by aM in which cx > aM, the level of the free surface is 
increasing. Since $'(a) > 0 in this region, and since the integral in (4.13) in- 
creases without bound as the wavelet aM approaches xc, R must have a zero, and 
consequently a bore must form at some x in the range 0 < z < x,. The point at  
which a bore forms depends on the behaviour of h(x) and the signal function 
$(a). This point can be arbitrarily close to x = z, if $'(a) is sufficiently small. 

0 0.2 0.4 0.6 0.8 1 .o 
H 

FIGURE 1. Variations of T M / T M ~ ,  the maximum amplitude of v/vo in a pulse, with H = h/h, 
for the cases when q M o / h o  = 0.01, 0.05 and 0.1. The broken curve is the prediction 
of linear theory. 

Once formed, a bore acts as a moving boundary which reflects part of the energy 
ofthe incident a-wave. Then the progressing wave approximation is valid only at 
any point up until a time when this reflected energy has a negligible effect on the 
flow. However, even for these times, the ambient slow variables S,,(x) cannot, in 
general, be approximated by hi(x), as it was for boreless pulses. It must be 
determined in terms of conditions ahead of the bore and the jump conditions 
across it. This is discussed in part 2 of this paper. 

According to (5.23) and (5.36), as the maximum depression a t  x = 0, rfifo, 
approaches zero the sonic, or critical, point x, approaches the shoreline x = L, 
where h(L) = 0. However, to analyse the behaviour of a pulse as it passes x = L 
and climbs an initially dry beach, not only the complications associated with the 
shoreline being a sonic point must be taken into account, but also other complica- 
tions associated with the fact that h(x) .+ 0 as x - f  L.  In  general, both the cumu- 
lative effect of dispersion and the reflected wave influence the pulse during run up. 

In  the same way that the aZgebraic relations (5.21)-(5.23) determine the varia- 
tion of the maximum displacement of the free surface as a function of H ,  and 
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FIGURE 2. Variations of ( 7 ~  - q M o ) / h o ,  the maximum value of (q - T o ) / h ,  in & pulse, with H 
when T M o / h o  = 2, 4, 7, 10. 

H 

1.0 0.8 0.6 0.4 0.2 

s7 
f i  

f i  

. z 

FIGURE 3. Variations in T , I M / ~ M ~ ,  the maximum depression of the free surface, with H when 
vMo/h ,  = - 0.01, - 0-05 and - 0.1. The broken CWVQ depicts the value of qM/rM, at any 
H at  which the flow becomes critical. 
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consequently as a function of x once H ( x )  is specified, the algebraic relations 
(4.14), (5.22) and (5.23) also determine the variations in the maxima of the fluid 
velocity uM, and rate of mass flow which is proportional to QM = uM a$. These 
maxima also occur at the passage of the wavelet aM. Figure 4 depicts typical 
variations of the speed c ~ , ~  with which these maxima travel. Since (4.14) and 

and 

(5.38) 

(5.39) 

as a pulse of elevation moves shoreward into a region where H is decreasing, uM 
increases and QITI decreases. A t  the shoreline, 

(5.40) 

where vMMs/ho is given in terms of qnfo/ho by (5.23) and (5.32). 

1 .0 

0.5 

0.2 0.4 0.6 0.8 1 .o 
H 

FIGURE 4. Variations in the speed CM with H with which maximum elevations and 
maximum depressions travel when vM,/ho = & 0.01, +_ 0.05, and 0-1. The broken curve 
gives the prediction of linear theory. 

6. Small amplitude theory 
For many purposes the description given in $ 5  of how the maxima of the flow 

quantities vary with x is sufficient, if it is supplemented by the formula 

which gives the time these maxima arrive at  x after passing x = 0. However, if a 
more detailed account of the behaviour of the pulse is required, such as the change 
in shape of the wave profile, a more thorough study of the formulae (4.7)-(4.9), 
(4.14)) (4.15), and the formula (4.11), for t ( a , ~ ) ,  must be made. This study is 
greatly simplified when the amplitude of the pulse is small in the sense that 

1F-11 'g 1.  (6.2) 
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In  the small amplitude limit, to a first approximation the inequality (4.21) 
reads 

where ,u=maxIPM-lI < 1 .  (6.4) 

Consequently, the error in approximating c by (3F - hi) in the transport equation 
(3.3) for F, and in (4.10) for t ,  is O(,.U~WT~),  rather than O ( l w l )  as for a finite 
amplitude wave. This implies that over distances where the pulse remains sharp, 
the errors in F and t ,  that are obtained by neglecting the effect of non-zero AS, are 
O(pIw1). Of course, since the amplitude of ( F - 1 )  is itself O(p),  the error in 
using formulae (4.14) and (4.15) for the flow variables 7 and u is still O(lw7I) .  

In  the small amplit>ude limit, it is convenient to work with 

f=F-1 ,  (6.5) 

rather than F .  Then, to a first approximation, (4.7) reads 

f= f 0 ( a ) H - f  
while (4.13)-(4.15) imply that 

and 

Equation (4.1 1)  for the arrival time is approximated by 

where to(x), the arrival time of the pulse front at z, is given by (4.19). Oncefo(a) is 
known, (6.7)-(6.9) give a complete parametric description of conditions in any 
small amplitude pulse. To determine fo note that, according to (6.7) and (6.9), 

at x = 0, - 17 =f.(’). 
h0 70 

(6.10) 

The small amplitude theory described by (6.6)-(6.9) is non-linear, since it 
takes into account the cumulative effect of locally small non-linearity. The small 
amplitude linear theory neglects the integral terms in (6.8) and (6.9). This is 
permissible in the small acceleration, or small slope, limit when 

(6.11) 

The corrections to this linear theory furnished by (6.6)-(6.9) were first suggested 
by Whitham (1957) in his theory of the sonic boom. Regular asymptotic expan- 
sions, which yield the expressions (6.6)-(6.9) as the first terms, have been given by 
Varley & Cumberbatch (1966) and Seymour & Varley (1970). Note that, ac- 
cording to (6.7) and (6.11), the fluid acceleration induced at the passage of the 
front is 

(6.12) 
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(6.13) 

The result (6.12) is identical with the exact expression for the acceleration given 
by Varley & Cumberbatch (1965). 

h0 
A0 

where u,t(O) = -fI30). 

6.1. The cumulative effect of frequency dispersion 

In  the small amplitude, small acceleration limit, when (6.2) and (6.11) hold, the 
cumulative effect of non-zero AS can readily be calculated. For then the exact 
equations (3.3)-(3.5) can be formally linearized about P = S = h* and s2 = 70. If 

and s =  (Sh-4-1) (6.14) 

are used as dependent variables, while the linear characteristic variables 

OL = t - t0(S)/70 (6.15) 

and to (the arrival time of the pulse at 2) are used as independent variables, these 
linear equations can be written 

f,to = SWo)s and a,=+ h o ~ ( t 0 ) f  = %70s,tO. (6.16) 

In  (6.16) the Brunt-V&is&lL frequency w is considered as a function of to. The 
characteristic parameter a! varies in the range 

O < a < l .  (6.17) 

Over distances where the pulse remains sharp, equations (6.16) have asymptotic 
solutions (see Seymour BE Varley 1970) of the form 

41 

f = I: 7tfn<a,  E $ O ) ,  (6.18) 
0 

m 

0 
and = 7 0  X 7 t f n + z ( ~ ) : C L ( ~ o ) ,  

so that s = 0 ( ~ ~ ) f  as T ~ - + O .  (6.19) 

In  (6.l8),fO(a) is given in terms of the variation in 7 at x = 0 by (6.10) and 

(6.20) 

The first terms in the asymptotic expansions (6.18) forf and s are 

f o ( a )  and - i (w70) 1 a f ~ ( S )  ds, (6.21) 
0 

respectively, the second term in the expansion for f is 

(6.22) 

In  the small acceleration limit (6.11), the approximation to the flow variables 
given in (6.6)-(6.9) amounts to taking f =fo(a) and s = 0. According to (6.21) 
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and (6.22), for this approximation to be valid, not only is it necessary that the 
pulse be short in the sense that 

170~1 < 1, (6.23) 
but it is also necessary that 

y = f 7 0 p d r  4 1.  (6.24) 

Condition (6.23) is a local condition on the duration of the pulse, (6.24) is a 
global condition on the cumulative effect on f of small, but non-zero, s. Since y is an 
increasing function of to, as a pulse moves over large distances into a region where 
w + 0 and (6.23) holds, condition (6.24) can be violated. 

When condition (6.24) does not hold but the pulse is still short, so that 
(6.23) does, the pulse is no longer sharp in the sense described in $ 5 :  it is fre- 
quency dispersed. However, the effect of reflected energy is still negligible in the 
sense that s = O( 1 ~ 7 ~ ) ) .  In  this limit, f and s do not admit of regular asymptotic 
expansions when considered as functions of to and a. However, they do have 
regular asymptotic expansions when considered as functions of to, a and the slow 
variable y. In  fact these expansions are of the form 

and 

(6.25) 

(6.26) 

where q50 satisfies the telegraph equation 

and (6.28) 

(which also Satisfies the telegraph equation). The Pn and Q, satisfy the recurrence 

and 

Equations (6.29) and (6.30) are solved subject to the conditions, 

Po = 1, = Q0 !E 0, 

and Pn(0) = 0 all n 2 1. 

According to conditions (6.29)-(6.32), 

PI = 0, Pz = &[w; - 4, Q1 = - &W and Qz = - Qdu/dto, 

(6.29) 

(6.30) 

(6.31) 

(6.32) 

(6.33) 

where w,, = w(0) .  To confirm that the expansions (6.25) and (6.26) do indeed 
(formally) satisfy (6.16), use (6.27) and (6.28), which are solved subject to the 
conditions that 

g50 =fo(a) when y = 0, and q50 -= 0 when a = 0, (6.34) 

4n.u = - #n+1, q5n.a = 9n-1- (6.35) 
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A more detailed study of the expansions (6.25) and (6.26) indicates that they 
provide a good representation off and s when (6.23) holds, when ~ ( T ~ w I  is finite, 
and when the amplitudes of all derivatives of roo with respect to tO/rO are also 
negligibly small compared with unity. 

The solution to (6.27)) that satisfies conditions (6.33), is 
P a  

$0 = J ~ o ~ [ ( a  - s )  Y I + ) ~ X S )  ds, 

where Jo denotes the Bessel function of zero order. More generally, 

$n = S a ~ ( 2 [ ( a - s ) l / l i ) f ~ ( s ) ~ s )  0 

where f ,  is given in terms offo by (6.20). According to (6.36)) when 

(6.36) 

(6.37) 

is not negligibly small compared with unity, the pulse is dispersed in the sense 
that, to a first approximation, conditions a t  any station x a t  the passage of the 
wavelet CL now also depend on the information carried by all precursor wavelets. 
Only for a time interval (t-to), which becomes vanishingly small as y-fco, is 
c q  < 1, which is a sufficient condition for $,(a, y) to be approximated by f,(a) 
(its value in the sharp pulse expansion (6.18)). Since 0 6 Jo < 1, for all y, 

y) 1 6 1 a I ~ A ( $ )  1 (6.39) 

If (fk(a)l is bounded, the ultimate effect of dispersion as y+cc is to attenuate 
$,(a, y). For example, if the pulse front is an acceleration front then, according to 
(6.36), for 0 < a < 1, 

as Y + ~ >  $0 (ay)-:Jl(z(ay):)~~(o)a, (6.40) 

where J1 denotes the Bessel function of order one.? In  a layer near the front where 
(ay)+O as y-fcc, the right-hand side of equation (6.40) has the limiting value 
f i (0)a.  Behind the front where ( a y )  -f co as y-f 00, the dominant approximation 
to the right-hand side of (6.40) is 

nd(ay)-% cos [2(ay)$ - 3r]f6(0)a. (6.41) 

Note that, according to (6.40), the asymptotic decay in $o is controlled by fA(0) 
and is independent of the detailed behaviour of fo(a). Also note that, since $n 

is related to f, in the same way that $o is related to fo ,  and since by the con- 

fA(0) = 0 for all n 3 1, (6.42) struction (6.20) 

as y-fco, $, = o ( $ ~ )  for all n 3 1,  (6.43) 

0 

so that the first term in the expansion (6.25) remains dominant. 

t Dr P. A. Blythe has pointed out that this is the first term in the asymptotic expansion, 

which is valid when CL < 1 as (cc/y) + 0. 
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For non-zero ay, the first approximation to 7 and u in a small amplitude, small 
acceleration pulse are given by (6.7), withfo(a) replaced by do(a,y). One of the 
consequences of this is to modify the arrival time and value of stationary values 
of the elevation 7. Such a stationary value now occurs at  any station x when 

1, the pulse is sharp, and the stationary values occur at  the 
passage of the wavelet aM at which f ;(anf) = 0. By contrast, as y -+ co, the pulse is 
completely dispersed, and only the value of f;(O) influences the dominent be- 
haviour of the pulse, Then, since $o can be approximated by 

$0 = f;(O)y-l(ay)~Jl(2(ay)a)Y (6.44) 

= 0. When y 

the arrival time of a local maximum, or minimum, of 7 is given by 

ay = &(t-to) w2dr = constant, = h say, (6.45) 

J0(2ht) = 0. (6.46) where 

According to (6.44)-(6.46), as y-foo, the arrival time of any one of these maxima 
approaches the arrival time to(x) of the pulse front, while $OM decays like y-1. 
As y-fco, the first approximations to 7 and u are 

1:" 

so that, moving according to the law (6.45), 

Q (f)-% y-1. 
h 

(6.47) 

(6.48) 

As y increases and the wave is dispersed, the time interval at  any station x, over 
which there is an appreciable disturbance, also increases, until the wave can no 
longer be regarded as a short duration pulse. Then the pulse approximation, which 
is described by the expansions (6.25) and (6.26), is valid only at  the head of the 
wave, where 

(6.49) 

In this region, according to (6.47), as y-tco the flow approaches the asymptotic 
state (6.47), which is independent of the detailed form of the signalfunctionf,,(a). 
At any station x, the head wave finally adopts anundular form, with an amplitude 
which increases with ( t  - to). According to (6.41), which is thelimiting behaviour of 
(6.47) as ( a y )  --f oc), the amplitude of the oscillations in this head wave increases 
like (t -to)*. This increase is, of course, finally arrested by dispersion. Since the 
argument of the function in square brackets in (6.47) is ay = (t--t,)~;~y, and 
since the coefficient of this function is independent oft, the result (6.47) states that 
the profile, at any station xo of the head of a small amplitude wave which has an 
acceleration front and has travelled sufficiently far, adopts the universal form 
A ( t  - t,)J,(B(t - to)&) for some constants A and B. In  part 2 we consider the run-up 
of a pulse with this particular profile towards a shoreline. 

One of the necessary conditions that the linear analysis above give an approxi- 
mate description of conditions in a pulse, or the head of a wave, is that 

(6.50) I7P4 = IU/hW G 1. 
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Consequently, since the maximum amplitude of Ir/hl is, by (6.41) and (6.47), 
proportional to y-P(h/ho)-% as y + 00, a necessary condition that the linear 
analysis is valid is that 

y-l(h/h,)-+ is bounded as y -+ 00. (6.51) 

The behaviour of a pulse as it approaches a shoreline x = L is determined, to a 
large measure, by whether the Brunt-Vaisiilii frequency ~ ( x )  is finite or infinite 
as x+ L. When o ( x )  remains bounded, so that at the shoreline the bottom topo- 
graphy is gently sloping in the sense that 

dhldx = O(h*) as x+L, (6.52) 

there need be no significant reflected wave, and there need be no significant 
cumulative effect of dispersion. However, because y remains bounded condition 
(6.51) is violated and consequently non-linearity plays a dominant role. In  fact, a 
bore must always form somewhere in the pulse. When w is unbounded at the 
shoreline, the local effect of reflected energy is always important, and, since y is 
also unbounded as x + L, so is the effect of dispersion. Non-linearity may, or may 
not, be important. The complex problem associated with locally large w will be 
discussed in a future paper. 

To illustrate the various possibilities consider the ease when 

Then, 

and 

h 
H = - h0 = ( I - : ) ~ ~  , where m > 0. (6.53) 

(6.54) 

According to (6.54), when m > 1, both o and y remain finite as the shoreline is 
approached, although the front speed approaches zero so quickly that the front 
cannot reach the shoreline in a finite time. Consequently, to is unbounded as the 
shoreline is approached. However, since for m > 1 the amplitude dispersion length 

(6.55) 

in (6.9) is unbounded as H+O, bores must always form in the pulse before it 
reaches the shoreline. The effect of weak bores is discussed in section (6.2). Their 
behaviour as they approach a shoreline when H is given by (6.53) will be described 
in part 2. When m < 1, which includes the case m = 4 of a constant sloping beach, 
both w and y are unbounded at  the shoreline, so that both the effect of reflected 
energy and dispersion are locally significant. Since, however, both the condition 
(6.51) and the small acceleration condition (6.11) need not be violated for ab- 
ruptly sloping topographies with m < 5, it would appear that, for such shore- 
lines, a linear theory which takes into account both reflected energy and dis- 
persion could be uniformly valid for low-amplitude incoming pulses. 
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6.2. Weak bores 

To  illustrate the effect of weak bores on a pulse, we consider the special case of a 
small amplitude pulse which forms a bore before the effect of frequency dispersion 
is significant. 

In  the small amplitude limit, when amplitude dispersion is important but 
frequency dispersion is not, the flow is described by (6.7)-(6.9). In thislimit, both 
the restrictions (6.60) and (6.24) hold but the small slope restriction (6.11) need 
not. When H is given by (6.53), a necessary condition that this be so is that 

6 = 2?nh,/L < 1. (6.66) 

At bore formation, the incremental arrival time 

(6.57) 

Bores form at wavelets wherefh(a) has a local positive maximum. Once formed, a 
bore overtakes the slower-moving characteristic wavelets ahead of it, and is 
itself caught by the faster-moving characteristic wavelets behind it, until the 
wave profile between neighbouring bores is completely amplitude dispersed. If 
t = B(x)  denotes the trajectory of a bore, then the usual bore conditions (see 

where v = u/h* and 6 =  yfh, (6.59) 

where [f] denotes the jump in any variablefat the passage of the bore. In  terms of 
8 and 6, the jump in the slowly varying Riemann function S is 

[s] = h q i  + e)* - awl. (6.60) 

In  particular, conditions (6.58) imply that, for a bore moving into an undisturbed 
region where v = 6 = 0, v behind the bore is given in terms of 13 by 

(6.61) 

while h*B'(x) = (1 + 8)-*( 1 + +8)-*. (6.62) 

The relation (6.61) differs from the simple wave relation 
v = 2{(1+B)4-1}, (6.63) 

which is obtained by eliminating from (4.14) and (4.15). This relation is the 
basis for the sharp-pulse approximation for any boreless pulse moving into an 
undisturbed region. However, as is well known, in the small amplitude limit 
when 6 < 1, (6.63) approximates (6.61) to within an error 0(e3) or, equivalently, 
even after the passage of a weak bore, the slow Riemam function S can still be 
approximated by h* to within an error O(e3). More generally, for a weak bore 
moving into a non-uniform region, (6.63) automatically satisfies the last con- 
dition in (6.58) to within an error 0(63). Consequently, a t  all wavelets which have 
not coalesced into a bore, the flow is still described to a first approximation by 
(6.7)-(6.9). The remaining bore condition implies that, if cc+(z) and cc-(x) denote 
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the characteristic wavelets immediately ahead and behind the bore as it passes 
the station x at time t = B(x) ,  then, to a first approximation, 

h$B’(z) = 1 - ;{f(a+) + f(a-))H-k (6.64) 

Condition (6.64) is supplemented by the further conditions, obtained from equa- 
tion (6.9), that 

(6.65) 

(6.66) 

These state that both the wavelets a+ and a- are at the bore t = B(x )  at the 
same instant. Oncef(a) and h(x) are known, (6.64) determines B(x) ,  a+(x) and 
.-(x). 

In  general, (6.64)-(6.66) must be integrated numerically. However, for a bore 
moving into an undisturbed region where f(a+) = 0, these equations can bo 
integrated without specifying the forms of the signal functionf(a) and the depth 
variation H ( x ) .  If B(x)  is eliminated from (6.64) and (6.66), an ordinary differen- 
tial equation is obtained for a = a-(x) at the bore. This integrates to give the 
relation. 

(6.67) 

which, once fo(a) and d(x)  are known, determines a-(2). Then, behind the bore, 

0 = v = fo(a-)H-%. (6.68) 

As a check on (6.67), note that it predicts that a bore forms a t  the front a- = 0 at 
a station x = xF, given by 

(6.69) 

According to (6.57), this is the value of x at which Q = 0 at the front. The for- 
mula (6.67) for a-(x) predicts that once a bore forms at  the front and travels over 
a region where the amplitude dispersion length d(x )  (defined by (6.55)) remains 
finite, it can only be reached by those wavelets at which f,, > 0. Consequently, if 
a = a. is the next zero off,, a- in (6.67) varies somewhere in the range 0 < a < u, 
as long as d is finite. 

When the bore travels into a region of unlimited extent where H remains 
bounded, so that the small amplitude assumption remains valid, then, as d 
increases without bound, (6.67) and (6.68) predicts that at the bore the decay in 

(6.70) 

In  addition, according t o  (6.66) and (6.67), the limiting trajectory of the bore is 

(6.71) 
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Behind the bore, the wave is fully amplitude dispersed, and 
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2 t - t  d -1 
2) = 8 - - 3 (ao--$) H-8 (%) for B(x )  d t < t O + ~ O a O .  (6.72) 

The bore has two major effects on the pulse. It attenuates it, and, because the 
bore moves faster than the acoustic speed at  which the wavelet a. travels, in- 
creases its duration at  any x. In  fact, according to (6.71), the duration of that 
part of the pulse, which before formation lasts for a time 70a0, increases without 
bound like 

(6.73) 

asd/h,+m.Thisrneansthat ultimately, unless w(x)  = O((d/ho)-8) asd/h,+m, the 
pulse is no longer short in the sense (4.2), and the effect of reflected energy must 
be taken into account. However, in practice, by the time the pulse approximation 
becomes invalid, the amplitude of the pulse may be so low that conditions in the 
pulse are of no interest. 

As a boreless pulse approaches a shoreline, v and 6 increase without bound, so 
that ultimately the small amplitude theory is not applicable. Since the effect of 
bores is to attenuate a pulse, is it  possible for a pulse with bores to be attenuated 
rapidly enough for it to remain a small amplitude pulse right up to the shoreline? 
The answer is no, because, €or this to be so, v and 8 would have to remain bounded 
at  the bore, and, according to (6.67) and (6.68), this is not possible, since 

(6.74) 

However, even though the final stages of the pulse and bore run-up must be 
described by a finite amplitude theory, for beaches where d + 00 as x -+ L (which 
means that m > 5 when H is given by (6.53)), the pulse may be completely 
amplitude dispersed while it can still be described by the small amplitude 
theory. Then, the study of the final run-up of such pulses is greatly simplified, 
because the profile of the pulse as it begins this last climb is of a definite 
form, rather than arbitrary. Below we derive conditions under which such fully 
dispersed small amplitude pulses can occur for polynomial beaches with m > 5. 

fo(a) > 0, for 0 < a < 1 ( =  ao) and fo(0) =fo(l) = 0, (6.75) 

For definiteness, we consider a pulse of elevation, for which 

and for whichfi(a) has one zero at a = a,. We also restrict 

(6.76) 

which ensures that the only bore to  form is at  the front of the pulse.? Moreover, 
we suppose that the pulse is still described by the small-amplitude theory, which 
neglects the effect of frequency dispersion as it passes a station x = xc, where 
H = E Q 1. This is so if, 

at x,, (i) 181 < 1, (ii) y < 1, and (iii) ( T W I  < 1, (6.77) 

t This pulse might be the whole wave or just the head of a more complex wave. 
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where the duration of the pulse T ( X )  is now measured from the arrival of the bore 
to the arrival of the wavelet a = 1. For xc < x < L, it is convenient to write 

H = &(x) where 0 < I? < 1. (6.78) 

In  this range, according to (6.55) and (6.56), form > 5, 

so that, to a first approximation, at  x = xE, 

(6.79) 

(6.80) 

According to (6.80), the pulse is completely amplitude dispersed at all those 
expansion wavelets which lie in the range as < a < 1, (at which f;(a) < 0), and 
which have not yet caught up with the bore if 

(6.81) 

This is because, since (6.82) 

at  x = xc, (6.83) 

when (6.81) holds. Hence, B,t and v,t are, to a first approximation, independent of 
t and the signal function fo(a). The problem now reduces to showing that con- 
ditions (6.77) (i)-(iii) can be satisfied without violating the large slope, or large 
acceleration, condition (6.79). This amounts to showing that the amplitude of 
f,, = fo(as), and the parameter 6 can be chosen so that all these conditions can be 
satisfied. This is easily done. If 

fo(as) = o(e9) as E + O ,  (6.84) 

then all these conditions are satisfied if 

8(m-1)12m < 1, (6.85) 
which is clearly possible. 

Consequently, as e+ 0 a pulse, which at x = 0 satifies conditions (6.75), (6.76), 
(6.81) and (6.85), differs by a vanishingly small amount from a fully amplitude- 
dispersed pulse as it passes 5 = xE. It can be shown that this pulse is preceeded by 
a bore whose trajectory is given by 

W(To - t - to) = Ag--(2+3m)/8m, 
- 

(6.86) 

where, becausef, = O ( E )  and because (6.85) holds, 

Behind the bore, the flow is fully expanded, and 

7m-2 - 

(6.87) 

(6.88) 

The behaviour of this pulse as a+ 0 will be discussed in part 2. 
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To illustrate the behaviour of bores which form in the body of a pulse, we note 
that the bore conditions (6.64) and (6.65) can also be integrated when the signal 
function fo(a) is anti-symmetric about a = aA for some range of a - aA. I f  

f ( a A + $ )  = -f(aA-$) 2 O for O < 4 < aA--aO, 

where f ( a A )  = f ( a O )  = O ,  

then equations (6.64) and (6.65) are satisfied if 

a+ = UA - $(z), and a- = aA+ $(x), 

where $(x) is determined from the relation, 

The bore trajectory is given by 

t = B(z) to(z) +7oaA, 

so that the bore moves with constant acoustic speed. Behind the bore, 

and, ahead of the bore, 

Note that, from (6.92) as d/A,+co, 

e = v = f ( a A + + ) ~ - f ;  

6 = v = -f(aa - 4 ) H - k  

f(aA + $) %..A -ao) ( W o ) - l ,  

(6.89) 

(6.90) 

(6.91) 

(6.92) 

(6.93) 

(6.94) 

(6.95) 

(6.96) 

so that, comparing (6.94) with (6.70), this bore is dissipated more rapidly than the 
bore moving into an undisturbed region. 

The results presented in this paper were obtained in the course of research 
sponsored by Department of Defense Project THEMIS under Contract no. 
DAAD05-69-C-0053, and monitored by the Ballistics Research Laboratories, 
Aberdeen Proving Ground, Md. 
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